Exact solutions of the Kudryashov–Sinelshchikov equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

exact solutions of the generalized kuramoto-sivashinsky equation

in this paper we obtain  exact solutions of the generalized kuramoto-sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    the methods used  to determine the exact solutions of the underlying equation are the lie group analysis  and the simplest equation method. the solutions obtained are  then plotted.

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

New exact solutions of the mBBM equation

The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin -Bona -Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has gener...

متن کامل

Exact Vacuum Solutions to the Einstein Equation

In this paper, we present a framework for getting a series of vacuum solutions to the Einstein equation. This procedure of resolution is based on a canonical form of the metric. According to this procedure, the Einstein equation can be reduced to some 2-dimensional Laplace-like equations or rotation and divergence equations, which are much convenient for the resolution. PACS numbers: 04.20-q, 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2010

ISSN: 0096-3003

DOI: 10.1016/j.amc.2010.09.003